Factor XII contributes to VEGF-induced retinal edema and neuroretinal responses in mice

Allen C Clermont¹, Nivetha Murugesan¹, Tuna Ustunkaya², Lloyd P. Aiello^{2,3}, Edward P. Feener¹.

¹KalVista Pharmaceuticals; Cambridge, MA

² Beetham Eye Institute, Joslin Diabetes Center; Boston MA

³Ophthalmology, Harvard Medical School; Boston, MA.

Diabetic Macular Edema (DME)

- DME is a leading cause of vision loss in working aged adults in developed countries
- Anti-VEGF therapies provide incomplete or minimal improvements in visual acuity in ~40% of patients ¹
- Preclinical studies have implicated Plasma Kallikrein as a mediator of both VEGF-dependent and -independent DME ²⁻⁷

1. Gonzalez et al., Am J Ophthalmol, 2017, 2. Gao et al, *Nature Medicine* 2007, 3. Phipps et al, *Hypertension* 2009, 4. Clermont et al, *Diabetes* 2011, 5. Liu et al, *IOVS* 2013, 6. Kita et al, *Diabetes* 2015, 7. Clermont et al, *IOVS* 2016

Clinical Data

- Plasma kallikrein (PKal) is increased in vitreous of patients with DME compared to subjects with macular hole (MH)¹.
- A Phase 2 randomized, sham-controlled, double-blind study assessed the efficacy, safety, and tolerability of monthly intravitreal KVD001 (3 or 6 μg) in 129 subjects with ongoing vision loss despite prior anti-VEGF treatment (NCT03466099)
 - Though this study did not meet the primary endpoint (change from baseline in BCVA letter count), it identified trends for improvement in visual acuity
 - At week 16, there was a significant decrease in the proportion of study eyes with any BCVA loss from baseline for KVD001 6 μ g (p=0.0421)
 - In subjects with less severe vision loss (BCVA >55 letters), gains in letter score at week
 16 favored KVD001 treatment compared to sham (p=0.0561)

¹Gao, et al *Nat Med 2007, 13*(2), 181-188. Kita, et al *Diabetes*. 2015 Oct;64(10):3588-99

Factor XII (FXII)

- FXIIa is the primary activator of the kallikrein-kinin system
- Both Plasma kallikrein and FXIIa inhibition reduce attacks in hereditary angioedema^{1,2}

¹Banerji et al JAMA 2018, ²Craig et al Lancet 2023

Factor XII is increased in human DME vitreous

Plasma Kallikrein (PKal) and Factor XII are increased in DME compared with macular hole (MH) vitreous

Source: Kita T et al. Diabetes 2015:64:3588–3599.

FXII protein levels correlate with kallikrein activity in DME vitreous

Source: Ustunkaya T etal Invest. Ophthalmol. Vis. Sci. 2016;57(12):4183.

Purpose

To investigate the effects of FXII on retinal edema and neuro-retinal responses in mice.

Effect of intravitreal FXIIa on retinal thickening

Method

- Bioptogen Envisu SD-OCT
- C57bL6 mice
- 1uL/eye
- Saline/FXIIa (50ng)

 Intravitreal FXIIa induced a 15% (24h) and 24% (48h) increase in retinal thickening compared with baseline.

Saline (24h)

FXIIa(24h)

FXII contributes to VEGF induced retinal thickening

FXIIa in Klkb1 KO

 FXIIa induced thickening is reduced by 77% in plasma prekallikrein (Klkb1) KO mice compared with WT mice

VEGF in FXII KO & Klkb1 KO

 VEGF induced thickening is reduced by 53.1% in FXII KO mice and 41.6% in Klkb1 KO mice compared with WT controls VEGF stimulates increased ERG amplitude in a timedependent manner

Method

- SD rat
- VEGF 10ng/eye
- Corneal surface electrode
- Dark adapted overnight
- Maximal stimulation flash
 - 5 ms duration
- Powerlab 4S/Labchart 6

Scotopic ERG Scotopic Amplitude (μV) **PBS** 200-Base 24hr -200 48 hr 20

Time (min)

120

140

40

ERG Amplitude PBS

Source: Clermont et al Invest. Ophthalmol. Vis. Sci. 2016;57(12)

VEGF-induced ERG amplitude abnormality is reduced in both FXII and plasma kallikrein knockout mice

B-wave amplitude

FXII deficiency protects against VEGF-induced neuroretinal dysfunction

Effects of FXII deficiency on ERG responses in mice with 4 months of STZ-induced diabetes

FXII deficiency protects against diabetes-induced neuro-retinal dysfunction

Potential role of the Kallikrein Kinin System in retinal edema and visual dysfunction

Conclusions

- Intravitreal FXIIa induced retinal thickening in WT mice and this effect is mediated through plasma kallikrein.
- Factor XII deficiency reduced VEGF stimulated retinal thickening.
- Factor XII and Plasma kallikrein deficiency are protective against VEGF-mediated and diabetes induced ERG abnormalities.
- FXIIa may provide a therapeutic target for retinal edema and visual dysfunction

Thank You